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In abstract mechanism theory, the designer is often presumed able to create a direct 
mechanism in which each participant reports its “type,” revealing the participant’s 

preferences along with anything else the participant may know. In practice, these 
details can be too numerous to report. For example, in Federal Communciations 
Commission (FCC) Auction No. 66 with 1,132 licenses for sale, a type includes 
a vector of values for every subset of licenses. Reporting that vector would have 
entailed reporting 21132 numbers.

One approach to mitigating the length-of-report problem is to simplify reporting 
by limiting the message space. The National Resident Matching Program uses this 
approach. It limits hospitals’ reports to a number of positions and a rank order list 
of candidates. If a hospital has 10 openings and interviews 50 candidates, it reports 
the number 10 and a list of 50—a manageably short message. In contrast, because 
the number of classes of 10 or fewer doctors from among 50 is about 1.3 × 1010, a 
general type report, including a rank order list of all those classes, would be imprac-
ticably long.

This paper introduces and analyzes a new message space—the space of assign-
ment messages—designed for use in auctions, exchanges, and other applications 
where goods are substitutes. Assignment messages describe preferences indirectly 
as the value of a linear program for which the set of constraints is describable as a 
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Assignment Messages and Exchanges†

By Paul Milgrom*

“Assignment messages” are maximally general messages to describe 
substitutable preferences by means of a linear program. With “inte-
ger assignment messages,” there exist integer-valued Walrasian allo-
cations, extending a result of Lloyd S. Shapley and Martin Shubik 
(1971). Any pure Nash equilibrium profile of the Walrasian mecha-
nism with participants limited to assignment messages is also a Nash 
equilibrium of the unrestricted Walrasian mechanism. Assignment 
exchanges are generalizations of single-product double auctions 
and are related to ascending multi-product clock auctions and the 
Vickrey mechanism. Assignment messages also have additional 
applications in mechanism design. (JEL D44, D82)
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structured collection of trees or hierarchies. We show that if the constraints have this 
form, then the goods are substitutes, regardless of the various parameters. Conversely, 
if the constraints describing substitution among different goods do not respect the 
tree structure, then there exist parameters such that goods are not substitutes. In that 
sense, the constraint structure employed by assignment messages is the most general 
one consistent with substitutable preferences in linear programming.

An assignment exchange is a simplified direct Walrasian mechanism in which 
participants are restricted to report their preferences using assignment messages. 
The properties of assignment exchanges are discussed below.

Among the parameters reported by a bidder in an assignment message are ones 
that specify local rates of technical substitution among goods.1 integer assignment 
messages restrict those rates to be zero or one, and restrict any bounds on groups of 
quantities to be integers. If all traders’ preferences can be described in this way, then 
there is an efficient allocation that is an integer vector.2 Consequently, the integer 
assignment exchange, which is the assignment exchange restricted to integer assign-
ment messages, transacts in integer quantities.

The assignment exchange shares important aspects of its price and payoff struc-
ture with its namesake, the assignment mechanism of Lloyd S. Shapley and Martin 
Shubik (1971).3 The integer assignment exchange has the further property that all 
equilibrium quantities are integers and extends the Shapley-Shubik mechanism in 
three important ways. First, participants in an integer assignment exchange may buy 
or sell multiple types of goods simultaneously, instead of just one type. Second, they 
may trade any integer number of units of each type of good, instead of just one unit. 
And third, they may buy some goods and sell others, instead of being restricted to 
just one role as a buyer or a seller.

The integer allocation property can be important for a variety of applications, 
including those in which commodities are shipped most efficiently by the truckload 
or container. Even when goods are perfectly divisible, contracts are often denomi-
nated and traded in whole numbers of units, so the ability to respect integer con-
straints may be useful even in those applications.

The restriction of local rates of technical substitution to zero or one is a strong 
one, but it is surprisingly often a reasonable approximation for practical applications. 
For example, an electric utility delivering retail power to its customers might acquire 
wholesale power from generators at three different locations, A, B, and C, but may 
be limited in its ability to utilize power from each source by its source-specific trans-
mission capacities. When additional transmission capacity is available at source A, 
one unit of power from A can substitute for one unit from any other source. When 

1 Strictly speaking, because the model is one of preferences rather than production, rates of “technical substi-
tution” are not defined. However, assignment messages report constraints resembling production constraints as 
well as parameters to determine the slopes of those constraints, so it is convenient and intuitive to describe the 
slopes of constraints using the language of producer theory. 

2 When bundles necessarily consist of integer quantities and goods are substitutes, a version of the limited 
one-for-one substitution property is implied. See Faruk Gul and Ennio Stacchetti (1999) and Milgrom and Bruno 
Strulovici (2009). 

3 In both mechanisms, goods are substitutes, and the set of market-clearing goods prices is a nonempty, closed, 
convex sublattice. Consequently, there is a seller-best, buyer-worse equilibrium price vector and a seller-worst, 
buyer-best equilibrium price vector. 
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capacity is not available, an additional unit of power at A is unusable. It replaces zero 
units of power from other sources. Similarly, a cereal maker may be able to substi-
tute bushels of grain delivered today for bushels delivered tomorrow up to a limit 
imposed by its grain-storage capacity, or it may substitute one unit of a particular 
type or grade of grain for one of another type within limits specified by the product-
formulation requirements. A similar substitution pattern is sometimes found among 
sellers, as when a manufacturer can deliver several versions of the same processed 
good in a total amount that is limited by the overall capacity of its factory.4 This pat-
tern of limited one-for-one substitution can be a useful approximation whenever lots 
differ in attributes such as time and location of availability, grade, degree of process-
ing, delivery and contract terms, or some combination of these.

General assignment messages extend the integer assignment messages by allow-
ing participants to specify local rates of technical substitution besides zero and one. 
For example, in markets for electric power, if the transmission losses in shipping 
power from A are higher than from B, then one unit of power from A replaces less 
than one unit from B—the rate of technical substitution is positive but less than one. 
Using integer assignment messages, a bidder can account for such transmission losses 
only approximately, by treating the power from different sources as having different 
money values, but general assignment messages allow an exact representation.

An important attribute of assignment messages is that they allow not only bids 
to buy or sell one of several different goods, but also “swap” bids. For example, 
in a securities market, a swap could specify that an offer to buy shares of stock is 
executed only if an offer to sell certain call options on that stock is also executed. 
Such a linkage can be especially valuable in markets with limited liquidity because 
it eliminates execution risk.5

The ability to report swap bids makes the integer assignment exchange applicable 
to some resource allocation problems involving complementary goods for which 
package exchange mechanisms might have been thought to be necessary.6 This is, 
perhaps, surprising given that assignment messages can directly only express substi-
tutable preferences. Figure 1 displays an example.

Points A, B, and C, in Figure 1, represent physical locations (in southeast Wyoming) 
where wind farms produce electrical power carried by new long-range transmission 
lines. Point D represents a node (in northwest Colorado) where the power is injected 
into the existing transmission grid. For a producer located at A, transmission capac-
ity along lines AC and CD are Leontief complements; the producer is constrained 
by the minimum of the capacity acquired on AC or CD. Similarly, producers at B 
regard BC and CD as Leontief complements. The power producers located at A, B, 
and C compete to acquire capacity on the CD link. Let us assume that there are one 

4 The National Resident Matching Program, with its fixed number of slots at each hospital, imposes one-for-
one substitution but excludes resident wages from the process. An assignment auction could be suitable for that 
application, provided that wages are made endogenous. Vincent P. Crawford (2008) proposes a simultaneous 
ascending auction mechanism for the same application. 

5 Some traders call this “leg risk” because the danger is that one “leg” of a transaction is executed while the 
other is not. 

6 See Milgrom (2007) for an introduction to the economic package allocation problem; Noam Nisan (2006) 
for an analysis of some message spaces that might be used in package auctions; and Peter Cramton, Yoav Shoham, 
and Richard Steinberg (2006) for a collection of related articles. 
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or more separate capacity suppliers for each link and that the costs for any suppliers 
that can supply more than one link are additively separable across links.

Despite the technical complementarities among successive links, preferences of 
both buyers of transmission links and suppliers of capacity can be expressed using 
integer assignment messages. The key lies in the way lots are defined. Suppose the 
exchange is organized to trade three kinds of lots. Each lot is a package of links 
sufficient to transmit a unit of energy from one of the points A, B, or C to point D 
(AD, BD, or CD, respectively). With lots defined in that way, each energy producer/
capacity buyer can bid on the lot connecting its location to the root at D, so these 
participants can express their preferences accurately. A supplier who wishes to offer 
capacity on one of the single links AC or BC can do that using a swap bid that links 
offers to buy and sell. For example, an offer to sell capacity on AC at a price of at 
least X is represented as a swap that links an offer to sell capacity on the AD lot with 
a bid to buy equal capacity on the CD lot at a price difference of at least X. Thus, 
with the specified lots, both buyers and sellers can express preferences accurately. 
The theorems about assignment exchanges apply. Despite complementarities and 
indivisible lots, which often preclude the existence of supporting prices, this is a 
special case in which the existence of market-clearing prices is guaranteed.7

Restricting the messages available to participants in a mechanism can affect 
incentives and performance. In a general simplification, some message profiles may 
be equilibria of the simplified mechanism even though they were not equilibria of 
the original, extended mechanism. A tight simplification is one with the property 
that, for every profile of participant preferences in some specified set and every 
ε ≥ 0, all of the full-information, pure ε-Nash equilibria of the simplified mecha-
nism are also ε-Nash equilibria of the original mechanism (see Milgrom (forthcom-
ing)). Assignment exchanges are tight simplifications of general Walrasian exchange 
mechanisms for any preference that can be represented by a continuous, real-valued 

7 A similar construction can be used in any acyclic network by identifying one node in each component of 
the graph as a root, and expressing all lots in terms of flows from a node to a root. Demand need not be located 
only at the roots for this construction to work, but the demanded packages of links must lie in sequence on one 
side of the root.
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Figure 1. A Y-Shaped Electrical Transmission Grid
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utility function whose arguments are the bidder’s assigned quantity vector and the 
price vector. Thus, even though participants may have preferences that are not well 
described by assignment messages, the restriction to assignment messages never 
introduces any pure ε-Nash equilibrium that was not already present in the full 
Walrasian mechanism.

The remainder of this paper is organized as follows. Section I introduces the 
assignment message space and reports three theorems about it. The first is that the 
assignment messages express only substitutable preferences. The second is that 
when all preferences are expressed by assignment messages, the set of market-clear-
ing prices is a nonempty, closed, convex sublattice. The third is that if all partici-
pants’ preferences are expressed with integer assignment messages, then there is an 
efficient allocation using only integer quantities of all goods. Section II provides a 
partial converse to two of these theorems. Assignment messages require that the 
constraints connecting different goods form a “tree.” If that constraint is relaxed at 
all, then the conclusions of the first two theorems of Section I are no longer valid. 
Section III discusses tightness. Its main conclusion is that the assignment exchanges, 
as well as many further simplifications of these exchanges, are tight simplifications 
of a Walrasian mechanism. Section IV discusses the connections between the assign-
ment exchange and two familiar mechanisms: the single-product double auction and 
the Vickrey auction. Section V discusses some of the most likely applications.

I. Assignment Messages

Consider a resource allocation problem with goods indexed by k = 1, … , K and 
participants are indexed by n = 1, … , N. If participants’ preferences are quasi-linear, 
then the utility for a trade is expressed as the value Vn (qn ) of the bundle qn  ∈  ℜK 
acquired plus any net cash transfer. The set of demanded bundles at price vector 
p is arg maxq n

 Vn (qn ) − p · qn , where qn may include both positive and negative 
components. A direct mechanism must specify a message space for describing Vn . 
Assignment messages model demand as originating from multiple sources, describ-
ing each qn as the sum of scalars x  j for j ∈ J(n), where j is the serial number of a bid 
and J(n) is the set of serial numbers for bids submitted by bidder n.

Formally, an assignment message consists of a collection of bids and constraints.8 
Each bid by bidder n consists of a 5-tuple (kj , vj , ρj , lj , uj ) where kj identifies the type 
of product, vj identifies the “value” of the bid, ρj > 0 identifies the “effectiveness,” 
and the remaining two terms are lower and upper bounds on quantity: l j ≤ 0 ≤ uj . 
The role of the effectiveness coefficient, which is to allow general local rates of tech-
nical substitution, will be formalized shortly.

In addition to the bids, participant n’s assignment message expresses quantity 
constraints of two kinds. First are the single-product bid group constraints for each 
good k:

(1)  lkS ≤  ∑ 
j∈S

   
 

   x j ≤ ukS for S ∈ ℑnk,

8 A related precursor to this message space is the space of endowed assignment messages, introduced by John 
William Hatfield and Milgrom (2005).
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where ℑnk includes all singletons S = {  j } for which kj = k and may include other 
subsets of rnk = {  j ∈ J(n) | k j = k} . For the singletons, lk   j {  j } ≡ lj and uk   j {  j } ≡ u j . 
Second are the multi-product bid group constraints indexed by the set ℑn  0 . These 
are of the form

(2)  l 0 S ≤  ∑ 
j∈S

   
 

   ρj   xj ≤ u 0 S for S ∈ ℑn0 .

Unlike the sets used in the single-product group constraints, the sets S ∈ ℑn0 may 
include bids on multiple products. Also, unlike the sums in (1), those in (2) are 
weighted by the effectiveness coefficients, to parameterize the rates of technical 
substitution among the different products. Note that these constraints can apply to 
bids to buy (lkS = 0), bids to sell (ukS = 0), bids to buy or sell (l k S < 0, ukS > 0), and 
swaps between multiple products (l 0 S = u 0 S = 0).

To simplify notation, we suppress the bidder index n while we are analyzing the 
reports and preferences of a single bidder. The index will reappear later when we 
analyze allocations for multiple participants. Using the bids and constraints,  bidder 
n’s message is interpreted to report a value for any feasible bundle of products 
q = (q1 , … , qK) as follows:

(3) V (q) =  max    
x
    ∑ 

j∈J
   

 

    vj  x j subject to

 l k  S ≤  ∑ 
j∈S

   
 

    x j ≤ u k  S for S ∈ ℑk , k = 1, … , K

 l 0 S ≤  ∑ 
j∈S

   
 

    ρj x j ≤ u0 S for S ∈ ℑ0

  ∑ 
j∈ r k 

  
 

    x j = qk for k = 1, … , K.

Because the vector (q, x) ≡ 0 satisfies all the constraints in (3), the zero bundle 
q = 0 is feasible. By a theorem of linear programming, the set of vectors q for which 
the problem is feasible is a closed, bounded, convex set Q ⊆ ℜK, and V is a continu-
ous, concave function on that set.

The next step is to put more structure on the single- and multi-product bid con-
straints to complete the definition of assignment messages. To describe this struc-
ture, we need to define three more concepts: trees, constraint forests, and extended 
predecessor functions.

As we described above, assignment messages allow two kinds of constraints. 
There is a set of constraints that describes substitution among products. These are 
required to form a tree. In addition, for each product k, there may be a set of con-
straints limiting the quantities assigned to each bid. These, too, must form a tree. 
Together, these trees form a constraint forest. To describe the relevant trees in a 
compact notation, we define an extended predecessor function that not only maps 
sets into their predecessors in the tree, but also maps bids into the smallest set in the 
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tree that contains that bid. These concepts, and others essential to the theorems of 
this section, are defined below.

DEFINITIONS: 

 1.  The demand correspondence for V is D( p) ≡ arg maxq∈Q V (q) − p · q.

 2.  The indirect profit function for V is π( p) ≡ maxq∈Q V (q) − p · q.

 3.  The valuation V is substitutable if for all prices p, p′ ∈  ℜ +  K  and all k = 1, … , K, if 
D( p) = { x } and D( p−k , p′k ) = { x′ } are singletons, and p′k  > pk , then x′−k ≥ x−k .

 4.  A collection of sets ℑ is a tree if (1) for any two nondisjoint sets S, S′ ∈ ℑ, either 
S ⊂ S′ or S′ ⊂ S and (2) ℑ contains a largest set—the union of all its elements. 
That largest set is the root of ℑ.

 5.  Given a tree of sets ℑ, its extended predecessor function (P) maps each ele-
ment of ℑ, excluding the root r, into its unique predecessor (the smallest set 
in ℑ which contains it), and maps each j ∈ r into the smallest set S satisfying 
j ∈ S ∈ ℑ. Below, Pk denotes the extended predecessor function for tree ℑk .

 6.  A constraint forest is a collection of trees and associated bounds 
{ℑ0 , … , ℑK , {(lkS , ukS) | S ∈ ℑk , k = 0, … , K   } } with all lkS ≤ 0 ≤ ukS . The trees 
satisfy: 

  (a)  The root of ℑ0 is r0 = J and, for k = 1, … , K, the root of ℑk is rk  
= {  j ∈ J | kj = k} .

  (b)  For k = 1, … , K, the terminal nodes of tree ℑk are the singleton sets {  j } with 
j ∈ J and kj = k.

  (c)  All bounds except the root bounds are finite, 0 ≥ lkS > − ∞ and 0 ≤ ukS < +∞, but 
the bounds on the roots may be infinite, 0 ≥ lkrk

 ≥ −∞ and 0 ≤ ukrk
 ≤ +∞.

  (d)  For any singleton set {  j } ∈  ℑ kj
  ,  l kj {  j }

  = l j and ukj {  j }
 = uj .

 7.  An assignment message consists of a collection of bids (kj, vj, ρj, lj, uj) and a con-
straint forest {ℑ0, … , ℑk, {(lkS, ukS) | S ∈ ℑk , k = 0, … , K   } }.

 8.  An integer assignment message is an assignment message with each ρj = 1 and 
with all bounds lkS and ukS integers.

 9.  An assignment exchange is a mechanism mapping profiles of assignment  messages 
for each bidder n to an outcome pair (q*

1, … , q*
N  , p*), where q* ∈ arg ma x {q | qn ∈ Qn}   

∑ n=1  N
     Vn (qn) subject to  ∑ n=1  N

     qnk = 0 for k = 1, … , K and p* is a supporting price 
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vector. That is, for n = 1, … , N, q*
n ∈ arg maxq ∈ Qn

(Vn (q) − p* · q) (equivalently, 
p*  ∈ arg minp πn ( p) + p · q*

n  ).

10.  An integer assignment exchange is an assignment exchange in which the 
 messages are restricted to be integer assignment messages.

The integer assignment messages extend the set of messages allowed by the 
Shapley-Shubik mechanism. In the Shapley-Shubik mechanism, each participant 
occupies just one role, as a buyer or a seller. Each seller message includes just one 
bid ( | J(n) | = 1), and each buyer message includes just one bid for each product. If 
participant n is a seller, then the constraints on its one bid are ln1 = −1 and un1 = 0. If 
participant n is a buyer, then its constraint bounds for each bid are lnj = 0 and unj = 1, 
and its one multi-product group constraint has bounds  l n0rn0

  = 0 and  u n0rn0
  = 1. The 

integer assignment message space extends this Shapley-Shubik message space by 
allowing more bids, more constraints, and general integer bounds.

The three main results of this section can now be stated. Proofs follow.

THEOREM 1: if participant n reports an assignment message, then its valuation 
V:q → ℜ, as given by (3), is continuous, concave, and substitutable, and its indirect 
profit function is submodular.

THEOREM 2: if every participant n reports a continuous, concave substitutable 
valuation on a convex, compact set Qn  , then the set of market-clearing prices for 
the report profile is arg minp  ∑ n=1  

N
     πn ( p). this set is a nonempty, closed, convex 

sublattice.

THEOREM 3: if every participant reports an integer assignment message, then 
there is an integer vector q* ∈ arg  max {q | qn ∈ Qn}   ∑ n=1  

N
     Vn(qn) subject to  ∑ n=1  

N
      qnk = 0 

for all k.

The proof of Theorem 1 makes use of two lemmas, which are of independent 
interest.

LEMMA 1: Suppose that the valuation function V is such that the corresponding 
indirect profit function π is well defined. then V is substitutable if and only if its 
indirect profit function π is submodular.9

LEMMA 2: Suppose π ( p) = minz g(z) subject to (z , p) ∊ S, where g is submodular, S 
is a sublattice in the product order, and p is a parameter. then, π is submodular.

9 Earlier versions of this result, as in Lawrence M. Ausubel and Milgrom (2002) or Milgrom and Strulovici 
(2009), impose additional restrictions, such as discreteness of the goods, which are appropriate for those contexts. 
This version drops the unnecessary additional assumptions. 



VoL. 1 No. 2 103MiLgroM: ASSigNMENt MESSAgES AND EXcHANgES

PROOF OF LEMMA 1: 
Since π is convex on ℜK  , it is locally Lipschitz and differentiable almost 

everywhere. By Hotelling’s lemma, the demand set is a singleton D( p)  
= {x ( p)} at exactly those points of differentiability, and πk( p) ≡ ∂  π( p)/∂  pk  
= −xk( p). Substitutability is equivalent to the condition that for k = 1, … , K, xk ( p) is 
nondecreasing in pk′ for k′ ≠ k. Submodularity is equivalent to the condition that, on 
the same domain, πk ( p) is nonincreasing in pk′ for k′ ≠ k.

PROOF OF LEMMA 2: 
Let p and p′ be two price vectors, and let z and z′ be  corresponding optimal solu-

tions, so that π ( p) = g(z), π ( p′ ) = g(z′ ), and (z , p), (z′, p′) ∈ S. Since S is a sublat-
tice, (z ∧ z′, p ∧ p′ ), (z ∨ z′, p ∨ p′ ) ∈ S. By the definition of π, π (   p ∧ p′ ) ≤ g(z ∧ z′ ), 
and π ( p ∨ p′ ) ≤ g(z ∨ z′ ). Since g is submodular, g(z ∧ z′ ) + g(z ∨ z′ ) ≤ g(z) + g(z′ ). 
Hence, π ( p ∧ p′ ) + π ( p ∨ p′ ) ≤ π( p) + π ( p′ ).

PROOF OF THEOREM 1: 
We will use the dual program corresponding to (3) to show that the indirect profit 

function π satisfies the assumptions of Lemma 2.

In program (3), let  λ kS  
u
   denote the dual price of the upper-bound (k, S)-constraint,  

λ kS  
l
   the dual price of the corresponding lower-bound constraint, and μk the dual price 

of the product k constraint. Since only one of  λ kS  
u
   and  λ kS  

l
   can be nonzero, both can 

be inferred from λkS =  λ kS  
u
   −  λ kS  

l
   . Using the duality theorem of linear programming 

(e.g., see David Gale (1960)) in the third inequality below, the indirect profit function 
corresponding to V is

(4) π ( p) = maxq V(q ) − p · q

 = maxq,x   ∑ 
j∈J

  
 

   vj x j −  ∑ 
k=1

  
K

    pk qk subject to

 lkS ≤  ∑ 
j∈S

   
 

    x j ≤ ukS for S ∈ ℑk , k = 1, … , K

 l0S ≤  ∑ 
j∈S

   
 

    ρj xj ≤ u0S for S ∈ ℑ0

  ∑ 
j∈rk

  
 

    xj − qk = 0 for k = 1, … , K

 = minλ,μ   ∑ 
k=0

  
K

      ∑ 
S∈ℑk

  
 

    (ukS  λ kS  
u
   − lkS  λ kS  

l
  ) subject to

      ∑ 
{S∈ℑk | j∈S}

  
 
    λkS + μk + ρj a     ∑ 

{S∈ℑ0 | j∈S}
  

 
    λ0Sb ≥ vj for all j ∈ J, k = kj

 μk ≤ pk for k = 1, … , K.
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A change of variables reveals the lattice structure in (4). For k = 0 and S ∈ ℑ0, 
define Λ0S = −  ∑ {  ̂  

  
 S ∈ℑ0 | S⊆  ̂  

  
 S }      λ0  ̂  

  
 S   and f0S (λ) = u0S max(−λ, 0) + l0S min(−λ, 0). For 

k = 1, … , K and S ∈ ℑk , define ΛkS = μkS +  ∑ {  ̂  
  

 S ∈ℑk | S⊆  ̂  
  

 S }      λ
k  ̂  
  

 S    and fkS (λ) = ukS max(λ, 0) 
+ lkS min(λ, 0). For all k = 0, … , K and S ∈ ℑk ,  fkS is nonnegative and convex. 
Substituting into (4), we obtain

(5) π ( p) = minΛ,μ  ∑ 
k=0

  
K

          ∑ 
S∈ℑk−{rk}

  
 
    fkS (ΛkS −  Λ  kPk(S) ) +  ∑ 

k=1
  

K

     f krk
  ( Λ krk

  − μk)

 +  f 0r0
  ( Λ 0r0

  )

 subject to

  Λ kj {  j }  − ρj  Λ 0P0(  j )  ≥ vj for all j ∈ J

 μk ≤ pk for k = 1, … , K.

Notice that the dual constraints and objective simplify to this form because of 
the tree structure we have imposed. For kj = k, the sets in tree ℑk that include j are 
exactly {  j }, Pk({  j }), Pk(Pk({  j })), … , rk, and similarly for tree zero.

Because each fkS is convex, each term of the objective in (5) is submodular in 
(Λ, μ, p) using the product order. The objective is a sum of submodular functions 
and therefore is itself submodular. A set { y | l ≤ a · y ≤ u} is a sublattice in the 
product order if and only if any two nonzero elements of the a-vector have opposite 
signs.10 So, each constraint in problem (5) defines a sublattice on the set of possible 
(Λ, μ, p)-vectors, and the intersection of sublattices is a sublattice. Hence, by Lemma 
2, π ( p) is submodular. And therefore, by Lemma 1, V is substitutable. 

PROOF OF THEOREM 2:
Since the corresponding primal problem can be represented as a continuous, con-

cave maximization on a compact set, the maximum exists and coincides with the 
minimum of the dual. Since the valuations are concave, the set of market-clearing 
prices is the set of solutions to the dual problem: arg minp  ∑ n=1  N

     πn ( p). Since each πn 
is continuous and convex, the set of minimizers of the dual problem is closed and 
convex. Since each πn is submodular, by a theorem of Donald M. Topkis (1978), the 
set of minimizers of the dual problem is a sublattice. 

10 This property of the rows of the dual constraint matrix, that no two nonzero entries have the same sign, is 
in remarkable correspondence with the condition required in the proof of Theorem 3 that no two nonzero entries 
in the columns of the constraint matrix of the primal problem have the same sign. The dual constraint matrix is 
obtained from the primal constraint matrix essentially by transposition, so the two conditions coincide. That is 
why the structure of assignment messages can be useful for proving the substitutes conclusion of Theorem 1 and 
the integer allocation conclusion of Theorem 3. 
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PROOF OF THEOREM 3: 
To find q* ∈ arg ma x {q | qn ∈ Qn}   ∑ n=1  

N
     Vn (qn) subject to  ∑ n=1  

N
        qnk = 0, we substitute 

from (3) and introduce variables xnkS as the sums of their successors in the tree (the 
elements of the set Pnk 

−1 (S )), so that the optimization is converted into one in which 
every inequality constraint involves just one variable. Because the bid j, and not just 
the set S = {  j  }, can be a successor to sets in the constraint trees under the extended 
predecessor function, define xnkj ≡ xj for all n = 1, … , N and k = 1, … , K. The tree 
structure allows us to show something stronger than claimed by the theorem, namely, 
that there is an integer optimal solution x* to the resulting problem:

(6)     max    
q
    ∑ 

n

   
 

   Vn (qn) subject to  ∑ 
n

   
 

    qnk = 0 for k = 1, … , K

 =  max    
x
    ∑ 

n

   
 

    ∑ 
j∈J(n)

  
 

   vj xj subject to

 lnkS ≤  ∑ 
j∈S

   
 

    xj ≤ unkS for S ∈ ℑnk, k = 1, … , K, n = 1, … , N

 ln0S ≤  ∑ 
j∈S

   
 

    xj ≤ un0S for S ∈ ℑn0, n = 1, … , N

  ∑ 
n

   
 

     ∑ 
j∈rnk

  
 

    xj = 0 for k = 1, … , K

 =  max    
x
    ∑ 

n

   
 

    ∑ 
j∈J(n)

  
 

    vj  x j subject to

 − xnkS +    ∑ 
S′∈ P nk  −1 (S)

  
 

    xnkS′ = 0 for S ∈ ℑnk , k = 1, … , K, n = 1, … , N

 xn0S −  ∑ 
S′∈ P n0  −1 (S)

  
 

    xn0S′ = 0 for S ∈ ℑn0 , n = 1, … , N

 lnkS ≤ xnkS ≤ unkS for S ∈ ℑnk , k = 0, … , K, n = 1, … , N

  ∑ 
n

   
 

    x nkrnk
  = 0 for k = 1, … , K.

The sign restrictions lnkS ≤ 0 and unkS ≥ 0 ensure that x ≡ 0 satisfies the constraints 
of the problem, so the problem is feasible. The bounds on each variable imply that 
the constraint simplex is bounded. For a feasible, bounded linear program, there is 
always an optimal solution at a vertex of the constraint simplex.11 Hence, to prove 
the theorem, it is sufficient to show that every vertex of the simplex defined by the 
constraints in (6) is an integer vector.

Each vertex of the constraint simplex is determined by a set of binding upper and 
lower bound constraints of the form xnkS = unkS or xnkS = lnkS and the equation Ax = 0, 

11 See, for example, Gale (1960).
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which describes the equality constraints in (6). Fix any vertex and denote the right-
hand sides of the binding upper and lower bound constraints by  

__
 u   and  

_
 l  , which, by 

hypothesis, are integer vectors. Write the vector x in the form (  ̂     x ,  
__
 x  l ,  

__
 x  u ), where the 

binding inequality constraints are  
__
 x  l =  

_
 l  ,  

__
 x  u =  

__
 u  , which we write as  

__
 x   = ( __

 u  ,  
_
 l  ) ≡ b. 

Let A
_
 and   ̂  

   
 A  be the matrices consisting of the columns of A corresponding to  

__
 x   and 

  ̂     x , respectively. Then the equation Ax = 0 can be written as 0 = Ax =   ̂  
   

 A   ̂     x  + A
_ 

   
__
 x    

=   ˆ 
    

 A   ̂    x  + A
_
 
__
 b  . Taking b ≡ − A

_
 
__
 b  , the equality constraints can be written as   ̂  

   
 A   ̂     x  = b. Observe 

that b is an integer vector, because A
_
 is an integer matrix and  

__
 b   is an integer vector.

It is therefore sufficient to show that for every nonsingular submatrix   ̂  
   

 A  of A and 
every integer vector b, there is an integer solution   ̂     x  to   ̂  

   
 A   ̂     x  = b. For this, it suffices 

to show that A is totally unimodular.12 According to a theorem attributed to Alan J. 
Hoffman (see I. Heller and C. B. Tomkins (1956)), a matrix is totally unimodular if 
two conditions are satisfied: all the entries of A are elements of the set {0, +1, −1}, 
and any two nonzero entries in the same column have opposite signs. We finish by 
verifying these Hoffman conditions.

Examine the columns of A as represented in (6) which correspond to the variables 
xnkS. For k = 0 and S = rn0, the root of tree ℑn0 for some participant n, xn0S appears in 
only one equality constraint in (6), and so has the single entry +1 in its column. For 
k = 1, … , K, each of the variables  x nkrnk

  appears twice (once in its defining equation 
and, again, in the market-clearing constraint for k), and its two coefficients, ±1, have 
opposite signs. For k = 1, … , K, and all sets S ∈ ℑnk − {rnk }, xnkS appears twice: once 
with coefficient −1 in the equation defining xnkS and once with coefficient +1 in the 
equation defining  x nkPnk(S) . For k = 0 and S ∈ ℑn0 − {rn0 }, xn0S appears twice: once 
with coefficient +1 in its defining equation and once with coefficient −1 in the equa-
tion defining  x n0Pn0(S) . Last are the xj variables. Recall that by our extended definition 
of predecessor, j ∈  P nk  

−1  (S) for exactly two sets, one in  ℑ nkj
  with coefficient +1 and 

one in ℑn0 , with coefficient −1. Hence, the Hoffman conditions are satisfied.

II. Partial Converse to Theorems 1 and 2

The structure of assignment messages allows bidders to report values and effec-
tiveness coefficients without limitations but restricts the form of constraints to be a 
constraint forest. This section shows that if one weakens the restriction that ℑn0 is a 
tree, then the conclusions of Theorems 1 and 2 fail.

The problem can be illustrated with an example of a buyer for whom the lower 
bounds lj and lkS are all zero. Suppose that there are three goods and that this buyer 
has three bids, j = 1, 2, 3, each with vj = 2.9, kj = j, and uj = 2. Suppose that the 
multi-product group constraints in the problem are x1 + x2 ≤ 3 and x2 + x3 ≤ 3, 
violating the tree structure. Then, for the price vector (0, 1, 2), the corresponding 
demand is (2, 1, 2) and for the price vector (3, 1, 2), the corresponding demand is 
(0, 2, 1); raising the price of good 1 reduces the demand for good 3, violating the 
substitutes condition. Moreover, if the available quantities are one unit of good 2 and 
two units each of goods 1 and 3, then the market clears for price vectors (0, 1, 2) or 

12 See the Wikipedia entry (http://en.wikipedia.org/unimodular_matrix) on “unimodular matrix” for an acces-
sible treatment of the relevant mathematics.
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(2, 1, 0) but not for the join, which is (2, 1, 2), so the set of market-clearing prices in 
this example is not a sublattice.

More generally, given any set of constraints ℑn0 that fails to have the tree struc-
ture, we can find a similar counter example as follows. Since the constraints do not 
form a tree, there are two sets, S, S′ ∈ ℑn0 , such that each of the three disjoint sets 
S − S′, S ∩ S′, and S′ − S are nonempty. Let goods 1, 2, and 3 denote elements of 
these three sets and specify that the values of any other goods are zero. Let the 
bounds constraining these goods be given as in the preceding paragraph and let the 
bounds on all other constraints be very large, so that those constraints do not bind. 
This specification reproduces the example of the preceding paragraph starting from 
any ℑn0 that is not a tree. That proves the following theorem.

THEOREM 4: if the set ℑn0 is not a tree, then there exist bids and integer bounds 
for each S ∈ ℑn0 and supplies for the other participants , such that the valuation Vn 
is not a substitutes valuation, the indirect profit function πn is not submodular, and 
the set of market-clearing prices is not a sublattice.

III. Tightness

A direct mechanism is a triple (N, M, ω), where N is the set of participants, M is 
the product space of types (“message profiles”), and ω: M → Ω, where Ω is the set of 
possible outcomes. The mechanism (N,   ˆ 

    
 M , ω) is a simplification of the mechanism 

(N, M, ω) provided   ˆ 
    

 M  ⊆ M. For tightness analysis, it is assumed that Ω ⊆ ×n∈N Ωn  
where each Ωn is a topological space, and that each player n’s payoff is represented 
by a continuous function un : Ωn → ℜ.

A simplified direct mechanism has the outcome closure property if, for every 
player n, strategy profile   ̂      m −n ∈   ˆ 

    
 M −n  , strategy mn ∈ Mn , and every open set o ⊂ Ωn 

such that ωn(mn ,   ̂      m −n) ∈ o, there is a strategy   ̂      m n ∈   ˆ 
    

 M n , such that ωn (  ̂      m ) ∈ o. This 
means that when other participants are limited to using simplified messages, limit-
ing n to do the same has little or no effect on the set of outcomes that n can pro-
duce. The mechanism (N,   ˆ 

    
 M , ω) is a tight simplification of (N, M, ω) if for all utility 

profiles u = (un)n∈N and every ε ≥ 0, every pure-strategy profile that is an ε-Nash 
equilibrium of the simplified mechanism is also an ε-Nash equilibrium of the origi-
nal, extended mechanism. The Simplification Theorem of Milgrom (forthcoming) 
asserts that if (N,   ˆ 

    
 M , ω) has the outcome closure property with respect to (N, M, ω), 

then the simplification is tight.
For this application, we take ωn = (qn , p). This specification permits each partici-

pant to care about his own goods assignment and the prices, but not about the goods 
assigned to others. In standard equilibrium theory, preferences for a participant n 
depend only on (qn , p · qn) , his goods assignment, and payment. By including the 
price vector in a more general way, the tightness analysis allows that a participant 
may prefer that its competitor’s product commands a low price or that its partner’s 
product commands a high price. It also allows a participant to have any preference 
for which the preferred sets are all closed and convex, but participants are not lim-
ited to such preferences and certainly not just to the preferences that are describable 
using assignment messages.
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The next theorem applies not just to the full assignment exchange, but also to 
mechanisms that limit the messages participants can use to a subset of the  assignment 
messages. To describe the permissible limitations on messages, let us say that an 
assignment message mn is minimally constrained if its only finite constraint bounds 
(lkS , ukS) correspond to the singleton sets S = {  j }. An elementary assignment mes-
sage mn for participant n is an assignment message that is minimally constrained and 
includes, at most, two bids for any product k: | {  j ∈ J(n) : kj = k} | ≤ 2 for k = 1, … , K. 
A full Walrasian exchange is any mechanism that accepts messages describing, for 
each participant, closed convex preferences over net trades and a feasible consump-
tion set with the null trade in its interior; and maps any message profile into a cor-
responding competitive equilibrium outcome, whenever one exists.

THEOREM 5: Any simplified Walrasian exchange in which each bidder n’s message 
space contains only assignment messages, and contains all elementary assignment 
messages, satisfies the outcome closure property with respect to any full Walrasian 
exchange and (hence) is a tight simplification.

Theorem 5 is proved by showing that for any price vector and goods assignment 
that can be obtained by some general message, a buyer can acquire nearly the same 
bundle and bring about nearly the same prices with an elementary assignment mes-
sage that bids for the equilibrium quantities at slightly higher than the equilibrium 
prices and that bids for additional quantities at slightly lower prices. For the full 
proof, details are added to ensure that this construction applies not only to buyers 
but also to sellers and to participants who bid to buy some items and to sell others. 
This establishes the outcome closure property. The tightness conclusion then follows 
from the Simplification Theorem.

PROOF:
Let   ˆ 

    
 M n be bidder n’s simplified message space, and let Mn be the message space 

used by a full Walrasian mechanism, as described above. Fix a participant n and 
messages   ̂      m −n ∈   ˆ 

    
 M −n and mn ∈ Mn . Let ( p, q) ≡ ω(  ̂      m −n , mn ). We now construct the 

elementary message described informally in the preceding paragraph.
Let σnk = sign(qnk) ∈ {−1, 0, 1} and fix ε > 0. Since n’s message space includes all 

elementary assignment messages, it includes the message   ̂      m n with bids j = 1, … , 2K 
as follows. For j = 1, … , 2K, let kj = ⌈ j/2 ⌉ (the smallest integer weakly exceeding 
j/2) and set v2k−1 = pk + σnk ε, v2k = pk − σnk ε, u2k−1 = u2k = max (0, qnk) and l2k−1  
= l2k = min (0, qnk). The message   ̂      m n specifies no other finite bounds. Let (   ̂     p ,   ̂     q ) 
be the competitive equilibrium outcome selected by the full Walrasian mechanism 
when the message profile is   ̂      m .

Since ( p, q) is a competitive equilibrium for the report profile (  ̂      m −n , mn), qn ∈  
arg ma x yn

  [ max {y−n |  ∑ l≠n  
 
   yl  = −yn }  (Vn(yn | mn) +  ∑ l≠n  

 
    Vl (yl |   ̂      m l))]. And since n demands qn 

at prices p, ( p, q) is also a competitive equilibrium for report profile   ̂      m . From that and 
the fact that ε > 0, qn uniquely solves arg  max yn

  [max{y−n |  ∑ 
l≠n

   
     yl = −yn} (Vn(yn |   ̂      m n) +  

 ∑ l≠n  
 
     Vl (yl |   ̂      m l))]. Hence, even though there may be multiple competitive equilibria for 

the message profile   ̂      m , all assign the bundle qn to participant n:   ̂     q n = qn. Moreover, since 
every market-clearing price vector supports this choice by n, the price vector   ̂     p  must  
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satisfy pk − ε ≤   ̂     p k ≤ pk + ε for every product k. Since ε can be arbitrarily small, the 
outcome closure property is proved. Tightness then follows from the Simplification 
Theorem cited above. 

IV. Connections to Two Familiar Mechanisms

In case K = 1, each participant’s assignment message describes a step supply 
or demand function. The assignment exchange is then a familiar double auction, 
in which the allocation is determined by intersecting single-product supply and 
demand curves. When the market-clearing prices or quantities are not unique, any 
selection rule is consistent with the assignment exchange.13 In general, the assign-
ment exchange extends the single-product double auction by allowing multiple prod-
ucts and a rich set of substitution possibilities among them.

The integer assignment exchange is connected to the Vickrey auction. In a Vickrey 
auction, if a participant n acquires a single unit of a single good k, its payment is the 
opportunity cost of that good, which is equal to the incremental value of one additional 
unit of good k to the coalition of all other participants. In the linear program for the 
integer assignment exchange, the lowest market-clearing price pk for good k is its low-
est dual price—the amount by which the optimal value would increase if an additional 
unit of good k were made available to the coalition of all players. If participant n has 
demand for just one unit in total and acquires a unit of good k, then the additional unit 
for the coalition of all participants is actually assigned to someone besides n, so pk is 
the increased optimal value of that unit to the other participants—n’s Vickrey price.

THEOREM 6: Suppose that some participant n bids to acquire, at most, one unit 
in an integer assignment exchange, and that the exchange selects the price vector p 
that is the minimum market-clearing price vector. then, if n acquires a unit of good 
k, the price pk is equal to n’s Vickrey payment.

A symmetric statement can be made about participants who sell one unit and 
exchanges that select the maximum market-clearing price vector.

V. Likely Applications

The most immediate opportunity for application of the assignment exchange 
technology is to auction off two or more substitute products for which the length-of-
report problem is important. Paul D. Klemperer (2008) has independently proposed 
a simple version of the assignment auction design. For this section, an auction is sim-
ply an exchange with one seller and many buyers or one buyer and many sellers.14

13 In one-sided cases (with just bids to buy and a fixed supply, or bids to sell and a fixed demand), the kinds 
of problems found in share auctions (Robert B. Wilson (1979)) can present themselves. Typical solutions to these 
problems, such as those proposed in David McAdams (2002) and Ilan Kremer and Kjell G. Nyborg (2004), can 
be adapted to the assignment exchange. 

14 Assignment auctions have several variations, mirroring the variations common in other sealed-bid auctions. 
For example, the auctioneer (whether buyer or seller) may move first, possibly announcing target quantities or 
reserve prices, or a supply or demand curve, or perhaps announcing rates of substitution among products. Or, there 
may be multiple stages, for example, a qualifying stage with just some bidders invited to the second stage.
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The previous best-practice mechanisms for dealing with the length-of-report 
problem were sequential mechanisms—the simultaneous ascending and descend-
ing clock auctions (Ausubel (2001)). In simultaneous clock mechanisms, bidders are 
asked to report supplies or demands at each of a sequence of announced prices, and 
the reported information is used to find approximate market-clearing prices and 
allocations. Because demands are announced for only a finite number of price vec-
tors, the information reported is much less than that of a full direct mechanism.

Simultaneous ascending or descending multi-product auctions of various kinds 
have been used for several high-value applications, most commonly ones involving 
radio spectrum, electricity, or natural gas (Milgrom (2004)), but also for real estate 
transactions and certain agricultural commodities markets.15 When the goods for 
sale are substitutes and participants bid myopically, various versions of the simulta-
neous ascending or descending auctions have been found not only to economize on 
communications but also to identify allocations that are efficient or stable or to find 
minimum or maximum market-clearing prices (Alexander S. Kelso, Jr. and Crawford 
(1982); Gul and Stacchetti (2000); Milgrom (2000); Ausubel (2004), Milgrom and 
Strulovici (2009)). This property makes these auctions directly comparable to assign-
ment auctions.

Because simultaneous ascending and descending auctions economize on commu-
nications and enable bidders to substitute in response to changing prices, they have 
important advantages over independent auctions of different goods. But they also have 
properties that make them unsuitable for many applications. Four of these disadvanta-
geous properties are high participant costs, long times-to-completion, imprecise com-
putations, and difficulties of scheduling. Any multi-round, real-time process adds the 
cost of real-time bidding to the costs of preparing for the auction. In current practice, 
dynamic auctions for gas and electricity take several hours to reach completion, while 
spectrum auctions take days, weeks, or even months. Such long times-to-completion 
cripple these mechanisms for the most time-sensitive markets, such as hour-ahead 
power markets, where only minutes are available to complete an exchange. In practice, 
ascending and descending auctions fail to identify exact market-clearing prices because 
they change the direction of price increments only a small number of times, using dis-
crete price increments.16 Finally, in export markets, where potential buyers may reside 
in a dozen or more different time zones, scheduling a convenient time for several hours 
of real-time bidding may be impossible. These four problems are avoided by direct 
mechanisms, including simplified direct mechanisms like the assignment auction.

The two main practical limitations of assignment exchanges arise because 
the message space may be too narrow to express bidders’ actual preferences and 
because, as a static mechanism, the auction provides no opportunity for bidders to 
learn from competing bids. The latter can be significant when there is uncertainty 
about a common factor that raises or lowers all values together, or when a bidder’s 
preferred trades depend on the trades made by other bidders.

15 In a simultaneous ascending auction, prices can be called by the auctioneer (these are the so-called “clock 
auctions”) or by individual bidders.

16 Ausubel and Cramton (2004) show how a clock auction with a richer message space (“intra-round bidding”) 
can avoid some of the disadvantages of discrete price increments. 
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Even the integer assignment messages, with their limited one-for-one substitution, 
allow ample expressiveness for some applications. Suppose, for example, that an 
electricity buyer can purchase power from any of three sources, k ∈ {1, 2, 3}, subject 
to transmission costs (t1, t2, t3) and transmission capacity limits (u1, u2, u3). If the 
buyer needs to buy P units of power and the value per unit is α, then bids j = 1, 2, 3 
with kj = j, vj = α − tj, uj = uj , lj = 0, and one constraint for S = {1, 2, 3} with u0S 
= P and l0S = 0 accurately express the bidder’s demand. If there are also significant 
transmission losses from some source j, a general assignment message accommo-
dates those by allowing the bidder to set ρj < 1.

In a double-auction with multiple buyers and sellers of electric power, other kinds 
of assignment messages can be valuable. For even if a buyer has already filled all 
of its power needs for some time period, it may be willing to sell up to β units of 
power at source 1 and buy the same quantity at 2 or 3, provided the price differ-
ential is favorable. This swap can be encoded with three bids and the constraints: 
0 ≥ x1 ≥ −β, β ≥ x2, x3 ≥ 0, x1 + x2 + x3 = 0.

Swap bids have the potential to add liquidity to an exchange hindered by lack of 
volume. Investigating this fully is beyond the scope of this paper. It requires a theory 
of why owners do not constantly participate in, and provide liquidity to, markets. 
Nevertheless, it is clear that in a market with modest liquidity, swaps encourage 
participation by limiting the risk that one part of an intended transaction might be 
executed without the other parts. With separate markets, a swapper with a budget 
limit might have to sell one commodity before buying the other in order to raise 
funds to transact, leaving the swapper exposed to the risk of not finding a seller for 
the other part of the planned transaction. By eliminating such risks, swaps make 
participation safer, increasing liquidity.

The power of simple assignment messages in the preceding example is important 
because simplicity is often a design goal. One might simplify the general assign-
ment exchange by limiting the number of bids, constraints, or levels in the constraint 
trees. Theorems 1, 2, 3, and 5 have been constructed to apply even to exchanges that 
incorporate such additional simplifications.

One common limitation imposed by auctioneers is a credit limit on buyers. Buyers 
might also want to express a budget limit. The assignment message space does not 
allow this to be done directly, but it does allow surrogates, such as a limit on the maxi-
mum total bid from a bidder, or on the maximum quantities that can be demanded.

Maximum quantity limits on some bidder or set of bidders can also be useful 
for a government auctioneer when bidder market power is a concern, or when there 
is a goal of promoting entry. Sometimes, this goal is best implemented by careful 
product definitions. For example, if the auctioneer wants to limit bidders 1 and 2 to 
purchase no more than half of the available units of good 1, it can accomplish that by 
splitting good 1 into types 1A and 1B and restricting bidders 1 and 2 from bidding 
on type 1B. This procedure is similar to the set-asides used by the FCC to restrict 
purchases by incumbents in some radio spectrum auctions.17

17 The FCC combined this with restrictions on post-auction transfers to limit gaming of the system.
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Whether the assignment messages are sufficiently encompassing is likely to vary 
by application. Certainly, scale economies and complements among lots are some-
times important and cannot generally be solved by redefining lots. For example, 
in electricity, generating plants typically have large fixed costs that require all or 
nothing decisions about whether to use their power capacity. While such limits are 
not directly expressible using assignment messages, it is often possible to use the 
assignment exchange as part of a solution. One ad hoc procedure is to operate the 
exchange in two or more rounds to allow preliminary price discovery to guide bids 
at the final round. This does not entirely eliminate the fixed-cost problem, but it may 
sometimes mitigate it sufficiently. Staged dynamics of this sort may also be helpful 
when there are important common value elements or when bidders can invest in 
information gathering during the process, as in Olivier Compte and Philippe Jehiel 
(2000) or Leonardo Rezende (2005).

Three key properties of assignment and integer assignment messages—that they 
are simple to use, express only substitutable preferences, and that integer assign-
ment messages lead to efficient integer solutions—make them potentially valuable 
for use with other mechanisms in addition to the Walrasian exchange. For example, 
two principal disadvantages of “standard” Vickrey auctions—the length-of-report 
problem and “low” seller revenues (less than in any core allocation)—hinge on the 
requirement to report a separate value for each possible package and the availability 
of messages that report nonsubstitutable values, respectively.18 A simplified Vickrey 
auction in which bidders are limited to reporting assignment messages escapes both 
of these disadvantages. There may also be applications to matching problems, with-
out cash transfers, such as the problems of assigning students to courses or flight 
attendants to routes, where integer allocations are essential and the substitutes struc-
ture may be a reasonable approximation.19

Simplification represents a promising approach to applied mechanism design, 
and assignment messages show high potential for use in simplified mechanisms for 
trading substitutable goods. Exchanges that utilize assignment messages are tight, 
easy for bidders to use, quick to run, precise in determining both equilibrium prices 
and goods assignments, and adaptable to settings that require integer solutions. The 
assignment exchange design is robust, in the sense that its key properties remain 
intact even when the assignment message space is further restricted in any way 
that does not eliminate any elementary assignment messages. It is also maximal 
in the sense that no extension of the constraint tree architecture is possible without 
destroying the key substitutes property of the message space. Taken together, these 
attributes make the assignment exchange an attractive candidate for the many practi-
cal applications.
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